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a b s t r a c t

Linear dimensionality reduction techniques are powerful tools for image analysis as they allow the
identification of important features in a data set. In particular, nonnegative matrix factorization (NMF)
has become very popular as it is able to extract sparse, localized and easily interpretable features by
imposing an additive combination of nonnegative basis elements. Nonnegative matrix under-
approximation (NMU) is a closely related technique that has the advantage to identify features se-
quentially. In this paper, we propose a variant of NMU that is particularly well suited for image analysis as
it incorporates the spatial information, that is, it takes into account the fact that neighboring pixels are
more likely to be contained in the same features, and favors the extraction of localized features by
looking for sparse basis elements. We show that our new approach competes favorably with comparable
state-of-the-art techniques on synthetic, facial and hyperspectral image data sets.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Linear dimensionality reduction (LDR) techniques are powerful
tools for the representation and analysis of high dimensional data.
The most well-known and widely used LDR is principal compo-
nent analysis (PCA) [14]. When dealing with nonnegative data, it is
sometimes crucial to take into account the nonnegativity in the
decomposition to be able to interpret the LDR meaningfully. For
this reason, nonnegative matrix factorization (NMF) was in-
troduced and has been shown to be very useful in several appli-
cations such as document classification, air emission control and
microarray data analysis; see, e.g., [7] and the references therein.
Given a nonnegative input data matrix ∈ +

×M n m and a factoriza-
tion rank r, NMF looks for two matrices ∈ +

×U n r and ∈ +
×V r m such

that ≈M UV . Hence each row ( )M i, : of the input matrix M is
approximated via a linear combination of the rows of V: for

≤ ≤i n1 ,

∑( ) ≈ ( )
=

M i U V k, : , : .
k

r

ik
1

In other words, the rows of V form an approximate basis for the
rows of M, and the weights needed to reconstruct each row of M
are given by the entries of the corresponding row of U. The
asalino),
advantage of NMF over PCA (that does not impose nonnegativity
constraints on the factors U and V) is that the basis elements V can
be interpreted in the same way as the data (e.g., as vectors of pixel
intensities; see Section 3 for some illustrations) while the non-
negativity of the weights in U make them easily interpretable as
activation coefficients. In this paper, we focus on imaging appli-
cations and, in particular, on blind hyperspectral unmixing which
we describe in the next section.

1.1. Nonnegative matrix factorization for hyperspectral images

A hyperspectral image (HSI) is a three dimensional data cube
providing the electromagnetic reflectance of a scene at varying
wavelengths measured by hyperspectral remote sensors. Re-
flectance varies with wavelength for most materials because en-
ergy at certain wavelengths is scattered or absorbed to different
degrees, this is referred to as the spectral signature of a material;
see, e.g., [21]. Some materials will reflect the light at certain wa-
velengths, others will absorb it at the same wavelengths. This
property of hyperspectral images is used to uniquely identify the
constitutive materials in a scene, referred to as endmembers, and
classify pixels according to the endmembers they contain. A hy-
perspectral data cube can be represented by a two dimensional
pixel-by-wavelength matrix ∈ +

×M n m. The columns ( ) ∈ +M j: , n

of M ( ≤ ≤j m1 ) are original images that have been converted into
n-dimensional column vectors (stacking the columns of the image
matrix into a single vector), while the rows ( ) ∈ +M i, : m of M
( ≤ ≤i n1 ) are the spectral signatures of the pixels (see Fig. 1). Each
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Fig. 1. Decomposition of the Urban hyperspectral image from http://www.agc.army.mil/, constituted mainly of six endmembers (r¼6): road, grass, dirt, two kind of roof tops
and trees. Each row of the matrix V is the spectral signature of an endmember, while each row of the matrix U is the abundance map of the corresponding endmember, that
is, it contains the abundance of all pixels for that endmember.
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entry Mij represents the reflectance of the i-th pixel at the j-th
wavelength. Under the linear mixing model, the spectral signature
of each pixel results from the additive linear combination of the
nonnegative spectral signatures of the endmembers it contains. In
that case, NMF allows us to model hyperspectral images because of
the nonnegativity of the spectral signatures and the abundances:
Given a hyperspectral data cube represented by a two dimensional
matrix ∈ +

×M n m, NMF approximates it with the product of two
factor matrices ∈ +

×U n r and ∈ +
×V r m such that the spectral sig-

nature of each pixel (a row of matrix M) is approximated by the
additive linear combination of the spectral signatures of the end-
members (rows of matrix V), weighted by coefficients Uik re-
presenting the abundance of the k-th endmember in the i-th pixel.
For all i, we have:

∑( ) ≈ ( )
( )=

M i U V k, : , : ,
1.1k

r

ik
1

where r is the number of endmembers in the image. The matrix U
is called the abundance matrix while the matrix V is the end-
member matrix. Fig. 1 illustrates this decomposition on the urban
hyperspectral data cube.

Unfortunately, as opposed to PCA, NMF is a difficult problem
(NP-hard) [22]. Moreover, the decomposition is in general non-
unique and has to be recomputed from scratch when the factor-
ization rank r is modified. For these reasons, a variant of NMF,
referred to as nonnegative matrix underapproximation, was re-
cently proposed that allows us to compute factors sequentially; it
is presented in the next section.

1.2. Nonnegative matrix underapproximation

Nonnegative matrix underapproximation (NMU) [8] was in-
troduced in order to solve NMF sequentially, that is, to compute
one rank-one factor ( ) ( )U k V k: , , : at a time: first compute

( ) ( )U V: , 1 1, : , then ( ) ( )U V: , 2 2, : , etc. In other words, NMU tries
to identify sparse and localized features sequentially. In order to
keep the nonnegativity in the sequential decomposition, it is
natural to use the following upper bound constraint for each rank-
one factor of the decomposition: for all ≤ ≤k r1 ,

∑( ) ( ) ≤ − ( ) ( )
<

U k V k M U p V p: , , : : , , : .
p k

Hence, given a data matrix ∈ +
×M n m, NMU solves, at the first step,

the following optimization problem:

− ≤
∈ ∈+ + 

M uv uv Mmin such that ,
u v F,

T 2 T
n m

referred to as rank-one NMU. Then, the nonnegative residual
matrix = − ≥R M uv 0T is computed, and the same procedure can
be applied on the residual matrix R. After r steps, NMU provides a
rank-r NMF of the data matrix M. Compared to NMF, NMU has the
following advantages:

1. As PCA, the solution is unique (under some mild assumptions)
[10].

2. As PCA, the solution can be computed sequentially, and hence
the factorization rank does not need to be chosen a priori.

3. As NMF, it leads to a separation by parts. Moreover the addi-
tional underapproximation constraints enhance this property
leading to better decompositions into parts [8] (see also Section
3 for some numerical experiments).

NMU was used successfully for example in hyperspectral [10] and
medical imaging [16,17], and for document classification [3].

1.3. Outline and contribution of the paper

Modifications of the original NMU algorithm were made by
adding prior information into the model, as it is also often done
with NMF; see, e.g., [4] and the references therein. More precisely,
two variants of NMU have been proposed:

1. One adding sparsity constraints on the abundance matrix,
dubbed sparse NMU [11].

http://www.agc.army.mil/
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2. One adding spatial information about pixels, dubbed spatial
NMU [12].

In this paper, we include both sparsity constraints and spatial
information in NMU. This allows us to extract localized features in
images more effectively. We present our algorithm in Section 2
and show in Section 3 that it competes favorably with comparable
state-of-the-art techniques (NMF, sparse NMF and several variants
of NMU) on synthetic, hyperspectral and facial image data sets.
2. Algorithm for NMU with priors

In this section, we describe our proposed technique that will
incorporate both spatial and sparsity priors into the NMU model.
This will allow us to extract more localized and more coherent
features in images.

2.1. Reformulation of NMU and Lagrangian-based algorithm

First, let us briefly describe the original NMU algorithm from
[8]. The original rank-one NMU problem is as follows:

− ≤
( )∈ ∈+ + 

M uv uv Mmin such that .
2.1u v F,

T 2 T
n m

As described in the introduction, solving this problem allows us to
compute NMF sequentially, that is, one rank-one factor at a time
while preserving nonnegativity. In [8], approximate solutions for
rank-one NMU (2.1) are obtained using the Lagrangian dual

( )
( )

∑

Λ

Λ

=

− + −
( )

Λ Λ≥ ≥ ≥ ≥ ≥ ≥
L u v

M uv uv M

max min , , max min

2 ,
2.2

u v u v

F
i j ij

ij

0 0, 0 0 0, 0

T 2

,

T

where Λ ∈ ×n m is the matrix containing the Lagrangian multi-
pliers of the underapproximation constraints. The authors prove
that for a fixed Λ, the problem ( )Λ≥ ≥ L u vmin , ,u v0, 0 , called La-
grangian relaxation of (2.1), is equivalent to

Λ( − ) −≥ ≥ M uvminu v F0, 0
T 2

which is equivalent, up to a scaling of
the variables, to

( )Λ− ≤ ≤
( )≥ ≥

u M v u vmax such that 1, 1.
2.3u v0, 0

T
2 2

In fact, one can show that any optimal solution of (2.2) is, up to a
scaling factor, an optimal solution of (2.3), and vice versa. It has to
be noted that, except for the trivial stationary point (that is, u¼0
and v¼0, which is optimal only for Λ− ≤M 0), any stationary
point of (2.3) will satisfy ∥ ∥ = ∥ ∥ =u v 12 2 (this can be shown by
contradiction). Therefore, without loss of generality, one can as-
sume =u 12 and =v 12 .

Based on these observations, the original NMU algorithm op-
timizes alternatively over the variables u and v, and updates the
Lagrangian multipliers accordingly. The advantage of this scheme
is that it is relatively simple as the optimal solution of u given v

can be written in closed form (and vice versa). The original NMU
algorithm iterates between the following steps:

� ( )Λ← ( − )u M vmax 0, , ← ∥ ∥u u u/ 2,� ( )Λ← ( − )v M umax 0, T , ← ∥ ∥v v v/ 2,� ( )Λ Λ μ σ← + ( − )uv Mmax 0, T where σ Λ= ( − )u M vT and μ is a
parameter.

Note that given u and v, σ Λ= ( − )u M vT is the optimal rescaling of
the rank-one factor uvT to approximate Λ−M . The parameter μ
can for example be equal to
t
1 where t is the iteration index to

guarantee convergence [8]. Note also that the original NMU
algorithm shares similarities with the power method used to
compute the best rank-one unconstrained approximation; see
the discussion in [10].

2.2. Spatial information

The first information that we incorporate in NMU is that
neighboring pixels are more likely to be contained in the same
features. The addition of spatial information into NMU improves
the decomposition of images by generating spatially coherent
features (e.g., it is in general not desirable that features contain
isolated pixels). In this paper, we use the anisotropic total variation
(TV) regularization; see, e.g., [13]. We define the neighborhood of a
pixel as its four adjacent pixels (above, below, left and right). To
evaluate the spatial coherence, we use the following function:

∑ ∑
( )

− =
( )= ∈

u u Nu2 ,
2.4i

n

j i
i j

1
1

where ( ) i is the set of neighboring pixels of pixel i, and ∈ ×N K n

is a neighbor matrix where each column corresponds to a pixel
and each row indicates a pair ( )i j, of neighboring pixels:

( ) = ( ) = − ( )N k i N k j, 1 and , 1, 2.5

with ≤ < ≤i j m1 and ( )∈ j i , and K is the number of neigh-
boring pairs ( ≤K n4 , because each pixel has at most 4 neighbors).
The term ∥ ∥Nu 1 therefore accounts for the distances between each
pixel and its neighbors. Note that the ℓ1 norm is used here because
it is able to preserve the edges in the images, as opposed to the ℓ2
norm which would smooth them out; see, e.g., [23,13]. The same
penalty was used in [12] to incorporate spatial information into
NMU.

2.3. Sparsity information

The second information incorporated in the proposed algo-
rithm is that each feature should contain a relatively small number
of pixels. In hyperspectral imaging, this translates into the fact that
each pixel usually contains only a few endmembers: the row
vectors of the abundance matrix U should have only few non-zero
elements. In [11], the authors demonstrated that incorporating
this sparsity prior into NMU leads to better decompositions. They
added a regularization term to the objective function in (2.1) based
on the ℓ1-norm heuristic approach, in order to minimize the non-
zero entries of u: u 1 where =u 12 . This is the most standard
approach to incorporate sparsity and was also used to design
sparse NMF algorithms [15].

2.4. Algorithm for NMU with spatial and sparsity constraints

In order to inject information in the factorization process, we
add the regularization terms for the sparsity and spatial in-
formation in the NMU formulation (2.3):

( )
( )

Λ φ μ− − −

( )
≤ = ≥ ≥

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟  
u M v u Numax .

2.6
u v u v

f u v

1, 1, 0, 0

T
1 1

,

2 2

The objective function is composed of three terms: the first one
relates to the classical least squares residual, the second en-
hances sparsity of the abundance vector u while the third im-
proves its spatial coherence. The regularization parameters μ
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and φ are used to balance the influence of the three terms. We
will refer to (2.6) as prior NMU (PNMU). Note that we relax the
constraint ∥ ∥ =u 12 from NMU to ∥ ∥ ≤u 12 to have a convex
optimization problem in u; see below for more details.

Algorithm 1 formally describes the alternating scheme to solve
the NMU problem with sparsity and spatial constraints (2.6).

Algorithm 1. Prior NMU: incorporating spatial information and
sparsity into NMU.
Re

En

1:
2:
3:

4:

5:

6:

7:

8:

9:
10:
11:

12:

13:

14:

15:

16:

17:

18:

19:
20

21:

22

23
24

25

26

27:

28

29

30
31:

32
33

34
quire: ∈ +
×M n m, ∈ +r , φ≤ ′ ≤0 1, μ≤ ′ ≤0 1, small para-

meter ϵ > 0, maxiter, iter.
sure: ( ) ∈ ×+

×
+
× U V, n r r m s.t. ≤UV M with U containing

sparseness and locality information.
Generate the matrix N according to (2.5);
for =k 1: r do

Λ[ ]=x y, , rank-one underapproximation(M); % Initialization
of ( )x y, with an approximate solution to NMU (2.1)

← ← ← ←u x v y x y; ; ;k k
x

x
y

y2 2
;

( )= + ϵ = ( )−
w Nx W w; diagi i

0.5
; % Initialization of IRWLS

weights

( )φ φ Λ= ′ −
∞

M y % Setting the sparsity parameter φ

( )( )φ= − =x x xmax 0, ; x
x 2

;

= ( )z mrand , 1 ; % Estimate of the eigenvector of B asso-
ciated with the largest eigenvalue
for =t 1: maxiter do

Λ= −A M ;
% Update of x

( )( )=B WN WN
T

;

for l¼1: iter = =z Bz z; z
z 2

; %Power method

for =l 1: iter do

μ μ= ′ ∞
∞

Ay

Bx
; % Setting of the spatial parameter μ

( )( )ε μ=L z Bzmax , T % Approximated Lipschitz

constant
μ φ∇ ( ) = − −f x Ay Bx ;

( )( )← + ∇x Lx f x ;

end for
: % Update of y

( )←y A xmax 0, T ;

: if ≠y 02 then ←y y
y 2

;

: %Update of Λ and save ( )x y,
: if ≠x 0 and ≠y 0 then

: σ σ= ← ←x Ay u x v y; ;k k
T ;

: ( )( )Λ Λ← − −+ M u vmax 0,
t k k

1
1

T ;

else

: Λ ← Λ
2
;

: ← ←x y;u
u

v
v

k

k

k

k2 2
;

: end if
% Update of the weights

: ( )= + ϵ = ( )−
w Nx W w; diagi i

0.5
;

: end for

: ( )= −M M u vmax 0, k k
T ;

: end for
35
As in the original NMU model, the optimal solution for v given
u can still be written in closed form. However, because of the
spatial information (the term ∥ ∥Nu 1), there is no closed form for
the optimal solution of u given v, although the problem is convex
in u. In order to find an approximate solution to that subproblem,
we combine iterative reweighted least squares with a standard
projected gradient scheme from [20], as proposed in [12]; see
below for more details. Finally, a simple block-coordinate descent
scheme is used to find good solutions to problem (2.6). This is
achieved by applying the following alternating scheme that opti-
mizes one block of variables while keeping the other fixed:

1. ( )( )Λ← −v M umax , 0
T

, ← ∥ ∥v v v/ 2 (lines 21 and 22).

2. ( )← − ∇ ( )u u f u
L w
1 (from line 12 to line 19) where L is the

Lipschitz constant of ( )∇f uw , where fw is a smooth approxima-

tion of f; see the paragraph below and Eq. (2.8). The projection is
defined as

( )
( ) ( )

( )
( ) =

≥
⎧
⎨
⎪⎪

⎩
⎪⎪

 s

s

s
s

s

max 0,

max 0,
if max 0, 1,

max 0, otherwise.
2

2

3. ( )( )Λ Λ μ σ← + −uv Mmax 0, T with σ = u MvT (from line 24 to
line 30).

Variables ( )Λu v, , are initialized with a solution of the original
NMU algorithm from [11] (line 3).

Smooth approximation of f. The variables v and Λ are updated as
in the original NMU algorithm, whilst the update of u is modified
in order to take into account the penalty terms. The update of u
involves the non-differentiable ℓ1-norm term ∥ ∥Nu 1 in the ob-
jective function f. Note that, since ≥u 0, ∥ ∥ = ∑ =u ui

m
i1 1 hence it is

differentiable on the feasible set. The authors in [12] suggested to
use iteratively re-weighted least squares (IRWLS) to approximate
the ℓ1-norm. At the t-th iteration, the term Nu 1 is replaced with

( ) ( )≈
( )=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  Nu u N W W N u,

2.7

t t

B

1
T T T

where ( )( ) ( )=W wdiagt t , diag(x) takes a vector x as an input and

returns a diagonal matrix with the entries of x on the diagonal,

and ( ) ( ) ε= +−
−

⎜ ⎟⎛
⎝

⎞
⎠w Nui

t t

i

1
1
2
(lines 12 and 32). The idea is to ap-

proximate the ℓ1-norm of a vector ∈ z n as a weighted ℓ2-norm:

∑∥ ∥ ≈ =
| | + ϵ=

z wz w
z

, with
1

,
i

n

i i i
i

1
1

2

where ϵ is a small constant (we used 10�3). In our case, the weights
are estimated using the value of u at the previous iteration. We
denote fw the modified objective function that approximates f at the
current iterate. Hence the non-differentiable term ∥ ∥Nu 1 is ap-
proximated with a convex and quadratic differentiable term u BuT ,
and we can use a standard gradient descent scheme from smooth
convex optimization [20] (line 17); the gradient being

( ) ( ) ( )Λ φ μ∇ = − − − ( )f u M v e Bu , 2.8w

where e is the vector of all ones of appropriate dimension. The
Lipschitz constant L of ∇fw is equal to the largest singular value of B.
Since the matrix B is rather large (but sparse), it is computational
costly to compute exactly its largest eigenvalue, hence we use
several steps of the power method (line 13) to estimate the Lip-
schitz constant L.
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Choice of the penalty parameters φ and μ. It is in general difficult
to choose a priori ‘optimal’ values for the penalty parameters φ
(sparsity parameter) and μ (local information). In fact, it is difficult
to know the sparsity and spatial coherence of the unknown loca-
lized features. Moreover, it is difficult to relate them to the para-
meters φ and μ. Note that this choice also depends on the scaling
of the input matrix: if M is multiplied by a constant, the first term
in (2.6) is increased by the same constant.

In this paper, we use scaling-independent parameters: we re-
place φ and μ with (lines 15 and 6):

( )μ μ
Λ

φ φ Λ= ′
( − )

= ′ −∞

∞ ∞

M v
Bu

M vand ,

for some μ′ ∈ [ ]0, 1 and φ′ ∈ [ ]0, 1 . These choices were proposed
respectively in [12,11]. They have the advantage to give a range of
possible values for the penalty parameters:

� φ′ = 1 is the highest possible sparsity level: it would imply that
the largest value of x is set to zero by the thresholding operator
in the projection  .

� μ′ = 1would give more importance to the spatial coherence and
will generate extremely smooth features (see next section for
some numerical experiments).

Computational cost. The computational cost of Algorithm 1 is
the same as the other NMU variants: it requires O(mn) operations
to compute each rank-one factor, for a total of O(mnr) operations.
Most of the cost resides in the matrix–vector products (Av and ATu
for the updates of u and v) and the update of the Lagrangian
multipliers Λ. Hence, the cost is linear in m, n and r, as for most
NMF algorithms (in particular the one described in the next
section).

Convergence. The convergence analysis of Algorithm 1 is non-
trivial, because it combines several strategies that are themselves
difficult to analyze. In fact, our algorithm is based on a Lagrangian
relaxation (whose subproblems are solved using a two-block co-
ordinate descent method) where the Lagrangian variables Λ are
updated to guarantee the convergence of the scheme [2] (see also
the discussion in [8]). This is combined with a reweighted least
squares approach to approximate the non-differentiable ℓ1 norm
∥ ∥Nu 1, which is also guaranteed to converge [5]. In practice, we
have observed that Algorithm 1 converges usually within 500
iterations (but this depends in particular on the size of the data
set); see Section 3.1 for some numerical experiments.
Fig. 2. Synthetic spectral signatures.
3. Experimental results

In this section, we conduct several experiments to show the
effectiveness of PNMU.

In the first part, we use synthetic data sets for which we know
the ground truth hence allowing us to quantify very precisely the
quality of the solutions obtained by the different algorithms.

In the second part, we validate the good performance of PNMU
on real data sets, and compare the algorithms on two widely used
data sets, namely, the Cuprite hyperspectral image and the CBCL
face data set.

The following algorithms will be compared:

� Nonnegative matrix factorization (NMF). We use the accelerated
HALS algorithm (A-HALS) [9] (with parameters α = 0.5 and
ε = 0.1, as suggested by the authors).

� Sparse NMF (SNMF). It is a sparse version of A-HALS [6] that
adds an ℓ1-norm sparsity-enhancing term for the abundance
matrix U. We run SNMF with target sparsity for the matrix U
given by the sparsity of the abundance matrix U obtained by
PNMU. Hence we can compare PNMU with SNMF meaningfully
as they will have comparable sparsity levels, as it was done in
[8] to compare NMU with SNMF.

� Nonnegative matrix underapproximation (NMU). This is PNMU
with φ′ = 0 and μ′ = 0.

� Nonnegative matrix underapproximation with local information
(LNMU). This is PNMU with φ′ = 0.

� Sparse nonnegative matrix underapproximation (SNMU). This is
PNMU with μ′ = 0.

� Nonnegative matrix underapproximation with prior information
(PNMU). This is Algorithm 1.

All the numerical results are obtained by implementing the
algorithms in Matlab 7.8 codes and running them on a machine
equipped with an ®Intel ®Xeron CPU E5420 Dual Core 250 GHz,
RAM 8.00 GB. The code is available online from https://sites.goo
gle.com/site/nicolasgillis/code. We use maxiter¼500, iter¼10 for
all experiments in the paper.

3.1. Synthetic data sets

Let us construct synthetic hyperspectral images. We use r¼4
materials perfectly separated. Materials are adjacent rectangles of
size × ( + )k10 1 pixels with =k 1, 2, 3, 4, so that the image at
each wavelength contains 10�14 pixels (m¼140); see the top row
of Fig. 5. Mathematically, for ≤ ≤i1 140 and ≤ ≤k r1 ,

( )

= ( − )( + ) + ≤ ≤ ( − )( + ) + ( + )⎧⎨⎩

U i k

k k i k k k

,

1 if 5 1 2 1 5 1 2 10 1 ,
0 otherwise.

We use n¼20 wavelengths. The spectral signatures are sinusoids
with different phases plus a constant to make them nonnegative:

( )ϕ( ) = + ( ) + ( ) ≥V j k x j k, 1.1 sin 0,

where ( ) = πx j j
n

2 with = …j n1, 2, , , and ϕ( ) = ( − ) πk k 1
r

2 with

= …k r1, 2, , . We also permute the rows of V so that adjacent
materials have less similar spectral signatures (we used the per-
mutation [ ]1 3 2 4 ). Fig. 2 shows the spectral signatures.

For the noise, we combine Gaussian and salt-and-pepper noise.
Let us denote ¯ =M 1.1 the average of the entries of UV (which is the
noiseless synthetic HSI):

� Gaussian. We use

( ) ∼ ¯ ( ) ≤ ≤ ≤ ≤G i j gM i n j m, 0, 1 , 1 , 1 ,

where g is the intensity of the noise. We use the function randn

(n,m) of Matlab.
� Salt–pepper. For the salt-and-pepper noise, we use a sparse

matrix P of density p whose non-zero entries are distributed

https://sites.google.com/site/nicolasgillis/code
https://sites.google.com/site/nicolasgillis/code


Fig. 3. Example of a synthetic HSI with =g 30% and =p 15%. Each image corres-
ponds to a wavelength.

Fig. 5. Basis elements extracted by the different algorithms for the synthetic HSI
with g¼0.3 and p¼0.15 of Fig. 3. From top to bottom: True materials, NMF, SNMF
with sparsity 0.75, NMU, LNMU, SNMU and PNMU with ϕ′ = 0.8 and μ′ = 0.5. The
match values are: (NMF) 14.34%, (SNMF) 1.64%, (NMU) 13.17%, (LNMU) 2.12%,
(SNMU) 7.26%, and (PNMU) 0.003%.
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following ¯ ( )M 0, 1 . We use the function sprandn(n,m,p) of
Matlab.

Finally, we generate the noisy hyperspectral image
= + +M UV G P; see Fig. 3 for an example. Given a solution ( ˜ ˜ )U V,

generated by an algorithm using matrix M, we will compare the
quality of the r extracted materials as follows. First, we normalize
the columns of Ũ so that the maximal entries are equal to one, that

is, ˜ ( ) ←
˜ ( )

˜ ( )
U k: , U k

U i k
:,

max ,i
for all k. Then, we permute the columns of Ũ

in order to minimize

∑( ˜ ) = ( ) − ˜ ( ) ∈ [ ]
( )=

U U
mr

U k U kmatch ,
1

: , : , 0, 1 .
3.1k

r

1
2

2

The match will be equal to zero if Ũ coincides with U (up to a
permutation of the columns), and equal to 1 when

( ) = ⟺ ˜ ( ) =U i k U i k, 0 , 1 for all i k, (perfect mismatch).
Note that for our particular U, the match value of the zero

matrix is equal to ( ) =Umatch , 0 25% (which is the density of U)
hence we should not expect values higher than that in our nu-
merical experiments. As we will see, match values higher than 2%
correspond to a relatively poor recovery of the matrix U; see Fig. 5.

3.1.1. Choice of ϕ′ and μ′
First, let us observe the influence of ϕ′ and μ′ on PNMU and

choose reasonable values for these parameters for these synthetic
data sets. We fix the noise level to g¼0.2 and p¼0.05, and vary ϕ′
and μ′. Fig. 4 shows the average match of PNMU over 20 randomly
generated synthetic data sets for different values of ϕ′ and μ′.

We observe that values of ϕ′ ∈ [ ]0.6, 0.9 and μ′ ∈ [ ]0.1, 0.5
provide good values for the match (below 1%, which is better than
Fig. 4. Average value of the match (3.1) of PNMU over 20 randomly generated
synthetic HSI with g¼0.2 and p¼0.05 for PNMU for different values of ϕ′ and μ′.
the other NMU and NMF algorithms; see Fig. 5). For the compre-
hensive comparison of the different algorithms in the next section,
we will use ϕ′ = 0.7 and μ′ = 0.5 for LNMU, SNMU and PNMU.

Fig. 5 shows the materials extracted by NMU, NMF, SNMF (with
sparsity 0.75), LNMU, SNMU and PNMU with ϕ′ = 0.7 and μ′ = 0.5
for the noise level g¼0.3 and p¼0.15. We observe that PNMU
identifies perfectly the four materials. SNMU performs relatively
well but returns the basis elements with salt-and-pepper noise.
LNMU returns spatially more coherent basis elements but they are
mixture of several materials (hence not sparse enough). NMF and
SNMF both return spatially less coherent basis elements, and
SNMF returns more localized (sparser) ones identifying relatively
well the materials (except for the smallest one).

Remark 1. The code to generate these synthetic HSI, and compare
the different algorithms is available from https://sites.google.com/
site/nicolasgillis/. Moreover, one can easily change the noise level,
the number and the size of the materials, and the number of
wavelengths. The values g¼0.3 and p¼0.15 were chosen because
they correspond to a high noise level where PNMU still performs
perfectly (see Fig. 7c). As we will see below, PNMU outperforms
the other approaches for most reasonable values of the noise level.

Regarding the convergence of PNMU, although it is difficult to
analyze rigorously (cf. the discussion in the previous section),
Fig. 6 displays the difference between iterates for this particular
numerical experiment, showing the relative fast convergence in
this case.

3.1.2. Comparison
Let us vary the noise level in three different ways:

� We fix =p 5% and we vary = …g 0, 0.05, 0.1, , 1. Fig. 7a shows
the average value of the match in percent for the different
algorithms. We observe that for all values of g smaller than 55%,
PNMU outperforms the other approaches, being able to

https://sites.google.com/site/nicolasgillis/
https://sites.google.com/site/nicolasgillis/


Fig. 6. Convergence for each rank-one factor generated by PNMU on the synthetic HSI with g¼0.3 and p¼0.15 from Fig. 3. Each plot displays the evolution of ∥ − ∥( + ) ( )u ut t1
2

and ∥ − ∥( + ) ( )v vt t1
2 where ( )( ) ( )u v,t t is the tth iterate generated by PNMU for each rank-one factor uvT computed sequentially (from left to right, top to bottom).
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generate basis elements with match much smaller than 0.5% (in
average, 0.12%). For higher noise levels, the performance of
PNMU degrades rapidly. SNMF performs relatively well
although the match is always higher than 0.7%. For high noise
levels, it performs better than PNMU although for these values
of the noise, all basis elements generated are relatively poor.
The other approaches perform rather poorly, with most of the
match values higher than 5%.

� We fix =g 10% and we use = …p 0, 0.01, , 1. Fig. 7b shows the
average value of the match in percent for the different algo-
rithms. PNMU performs best up to =p 35% (which is rather high
as 35% of the entries of M are highly perturbed) with match
smaller than 0.15% for all ≤p 0.1, and average match of 0.22%
for ≤ ≤p0.1 0.2. It is followed by SNMF while the other
approaches perform relatively poorly.

� We use =g q0.02 and =p q0.01 with = …q 0, 1, 2, , 50. Fig. 7c
shows the average value of the match in percent for the
different algorithms. Up to q¼20, PNMU performs best with
average match values smaller than 1%. For ≥q 23 which is
rather high ( =g 46% and =p 23%), PNMU deteriorates rapidly
but, although SNMF has the lowest match values, they are
relatively high and correspond to poor basis elements (and we
see that LNMU has similar match values for these high noise
levels).

In all cases, we observe that PNMU outperforms the other NMF
and NMU variants where the noise regime is reasonable. In par-
ticular, it performs very well (match <1%) for values up to

= =g p0.1, 0.3 (Fig. 7b), = =g p0.55, 0.05 (Fig. 7c) and
= =g p0.4, 0.2 (Fig. 7a), which is not the case for the other

algorithms.

3.2. Real-world data sets

In this section, we first illustrate the sensitivity of PNMU with
respect to the parameters μ′ and φ′ on the Cuprite hyperspectral
image. Not surprisingly, as we have already observed in the pre-
vious section, these parameters play a critical role.

However, as opposed to classical NMU that is completely un-
supervised, NMU with prior information may require human su-
pervision for tuning its parameters and choosing a good trade-off
between the reconstruction accuracy, and the spatial coherence
and sparsity of the features.
Then, a quantitative analysis is conducted. Because the ground

truth is not known for these data sets, we use three measures: the
relative error in percent

=
−M UV

M
Relative Error 100 ,F

F

T

the sparsity (percentage of nonzero entries) of the factors U

( ) ( )
=

#
∈ ∈ ×⎡⎣ ⎤⎦ s U

U

mr
U100

zeros
0, 100 for ,m r

and the spatial coherence of the basis elements

∑ℓ( ) =
∥ ( )∥
∥ ( )∥=

U
NU k
U k

: ,
: ,

.
k

r

1

1

2

Recall that ∥ ( )∥NU k: , 1 amounts for the spatial coherence of the
kth column of the abundance matrix U, while we normalize the
columns of U to have a fair comparison (since the algorithms do
not normalize the columns of U in the same way). The aim of our
experiments is to compare the algorithms in terms of the trade-off
between these three measures.

∥ ( )∥NU k: , 1

Adding constraint to the factorization process leads to an in-
crease of the approximation error, but the constrained variants
return sparser and/or spatially more coherent solutions. As already
noted in [8], it is not fair to compare directly the approximation
error of NMU with NMF because NMU computes a solution se-
quentially. In order to compare the quality of the generated spar-
sity patterns, one can postprocess the solutions obtained by all
algorithms by optimizing over the non-zero entries of U and V (A-
HALS can be easily adapted to handle this situation). We will refer
to “Improved” as the relative approximation after this post-pro-
cessing step.

Two sets of experimentation are conducted. The aim of the first
experiments is to show the behavior of the proposed method, and
to test its effectiveness in correctly detecting the endmembers in a
widely used hyperspectral image, the Cuprite image, and reducing
noise in the abundance maps. The second experiment shows the
effectiveness of PNMU in correctly detecting the parts of facial
images on one of the most widely used data set in the NMF lit-
erature, namely the MIT-CBCL face data set.



Fig. 7. (a) Evolution of the average match value (3.1) over 20 different synthetic data sets for different values of the Gaussian noise level (g) and for a fixed salt-and-pepper
noise level ( =p 5%). (b) Evolution of the average match value (3.1) over 20 different synthetic data sets for different values of the salt-and-pepper noise level (p) and for a
fixed the Gaussian noise level ( =g 10%). (c) Evolution of the average match value (3.1) over 20 different synthetic data sets for different values of the Gaussian noise level
( =g q0.02 ) and the salt-and-pepper noise level ( =p q0.01 ).
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3.2.1. Cuprite
The Cuprite data set1 is widely used to assess the performance

of blind hyperspectral unmixing techniques. It represents spectral
data collected over a mining area in southern Nevada, Cuprite. It
consists of 188 images with 250�191 pixels containing about 20
different endmembers (minerals), although it is unclear how many
minerals are present and where they are located precisely; see,
e.g., [19,1] for more information. First we discuss the influence of
the parameters μ′ and φ′ on the abundances obtained with PNMU.
Then a quantitative comparison is performed to show the effec-
tiveness of PNMU compared to the tested NMU and NMF variants.

Sensitivity of PNMU to the parameters μ′ and φ′. In this section,
we conduct some experiments to show the sensitivity of PNMU to
1 Available at http://speclab.cr.usgs.gov/PAPERS.imspec.evol/aviris.evolution.
html.
the parameters μ′ and φ′. To show a wide range of abundance
elements for different values of μ′ and φ′, we only extract
7 abundance columns (r¼7, light tones in the figures indicate a
high degree of membership). Fig. 8 shows the first seven abun-
dance images extracted by PNMU, when the penalty for sparsity is
fixed ( φ′ = 0.2) and the penalty for spatial coherence varies
(μ′ = …0.1, 0.3, , 0.9). We observe that increasing μ′ improves the
spatial coherence of the abundance images. However, high values
of μ′ (starting for μ′ = 0.5) lead to blurred images and loss of
contours (Figs. 8c, d and e).

Adding sparsity constraints into NMU allows us to detect
endmembers more effectively because sparsity prevents the mix-
ture of different endmembers in one abundance element [11].
Fig. 9 shows the first seven bases obtained with PNMU for μ′ fixed
to 0.1 and where φ′ varies (φ′ = …0.1, 0.3, , 0.9). It can be observed
that, as for the spatial information, small values of the sparsity

http://speclab.cr.usgs.gov/PAPERS.imspec.evol/aviris.evolution.html
http://speclab.cr.usgs.gov/PAPERS.imspec.evol/aviris.evolution.html


Fig. 8. Influence of the locality term on the first seven abundance images for the Cuprite data set: (a) mu ¼ 0.1, (b) mu ¼ 0.3, (c) mu ¼ 0.5, (d) mu ¼ 0.7, and (e) mu ¼ 0.9.

G. Casalino, N. Gillis / Pattern Recognition 63 (2017) 15–29 23
parameter φ′ (0.1 or 0.3) provide good results; in fact, for higher
values of this parameter, the abundances are too sparse, and
PNMU is not able to detect good features; see Figs. 8c, d and e.

Furthermore, it is necessary to point out that the sparsity and
the locality constraints influence each other. Indeed, higher spar-
sity implies that less pixels are present in each abundance element
which improves the spatial coherence (at the limit, all pixels take
the value zero and the spatial coherence is perfect). For example,
we observe in Fig. 8 that increasing μ′ also strongly influences
sparsity. A human supervision is necessary to adequately tune
these parameters. For the Cuprite data set, we have observed that
PNMU with μ′ = 0.1 and φ′ = 0.2 returns basis elements with a
good tradeoff between sparsity and spatial coherence.

Quantitative comparison. We now compare PNMU with the
algorithms listed in the introduction of Section 3 to show its ability
to extract features with a good trade-off between reconstruction
error, sparsity and spatial coherence. Figs. 10 and 11 display the
abundance images obtained by the different algorithms for r¼21
on the Cuprite data set. Table 1 provides a quantitative comparison
of the different algorithms, with the values of the relative error,
sparsity and spatial coherence.

We observe the following:

� NMF is not able to detect endmembers, and generates mostly
dense hence not localized abundance images, most of them
containing salt-and-pepper-like noise; see Fig. Fig. 10a.
This qualitative observation is confirmed by the quantitative
measurements from Table 1: although NMF has the lowest



Fig. 9. Influence of the sparsity term on the first seven abundance images for the Cuprite data set. : (a) phi ¼ 0.1, (b) phi ¼ 0.3, (c) phi ¼ 0.5, (d) phi¼0.7, and (e) phi ¼ 0.9.

Table 1
Comparison of the relative approximation error, the sparsity and the spatial co-
herence for the Cuprite data set.

NMF SNMF NMU LNMU SNMU PNMU

Error 0.62 2.59 1.37 1.44 1.87 1.85
Improved 0.61 2.02 0.71 0.66 1.13 1.09

( )s U 3.76 77.96 50.41 40.90 76.33 75.29

( )ℓ U 3606 3829 2585 2039 2292 1381

Bold values indicate the best performance among the six algorithms.
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reconstruction error (since it only focuses on minimizing it), it
has the lowest value for the sparsity of the abundances, and the
second highest value for their spatial coherence (higher values
mean worse spatial coherence).
� Despite the fact that SNMF gives sparser solutions than NMF,

the abundance images are surprisingly very poor in terms of
local coherence (highest value); see Fig. 10b.

� NMU returns sparse abundances, and is able to localize different
endmembers (see the description of the PNMU abundance
maps below), even if some images are rather noisy and the
edges defining the materials are not always well identified; see,
e.g., 11th and 16th abundance elements in Fig. 10c. It generates
sparser and spatially more coherent features than NMF, while
its relative error is comparable (0.61% vs. 0.71%).

� Not surprisingly, LNMU provides spatially more coherent (from
2585 to 2039) but denser (from 50.41 to 40.90) bases than NMU.



Fig. 10. Abundance elements obtained for the Cuprite data set with (a) NMF, (b) SNMF and (c) NMU algorithms
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Fig. 11. Abundance elements obtained for the Cuprite data set with (a) LNMU, (b) SNMU and (c) PNMU.
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Fig. 12. Abundance elements obtained for the MIT-CBCL Face data set with (a) NMF, (b) SNMF, (c) NMU, (d) LNMU, (e) SNMU, and (f) PNMU.
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Table 2
Comparison of the relative approximation error, the sparsity and the spatial co-
herence for the MIT-CBCL data set.

NMF SNMF NMU LNMU SNMU PNMU

Error 8.18 8.67 15.29 15.90 15.50 14.63
Improved 8.16 8.46 8.76 8.46 9.80 9.52

( )s U 54.89 84.80 70.05 58.65 87.69 85.77

( )ℓ U 457 310 419 55 334 271

Bold values indicate the best performance among the six algorithms.
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In particular, the edge delimitation of several materials is better
defined in the LNMU abundance maps, although some are still
rather noisy (e.g., 13th, 17th, and 19th) and relatively dense (e.g.,
6th and 8th); see Fig. 11a.

� Adding the penalty term inducing sparsity on NMU allows us to
remove some of the noise, though the edges of some materials
are still not well defined (Fig. 11b). In fact, compared to NMU,
SNMU quite naturally increases the sparsity of NMU abun-
dances (from 50.41 to 76.33) and improves the spatial coher-
ence (from 2585 to 2292), although the relative error is slightly
increased (from 0.71% to 1.13%).

� PNMU achieves the best trade-off between relative error (1.1%
vs. 0.6% for NMF hence an increase of only 0.5%, while NMF
clearly generates poor basis elements because they are mostly
dense and noisy – see the discussion above), sparsity (close to
that of SNMF, 77.96% vs. 75.29%), and spatial coherence (PNMU
achieves the lowest value). Fig. 11c shows the abundance
images obtained with PNMU for the Cuprite data set with
parameters μ′ = 0.1 and φ′ = 0.2. It can be observed that the
images are less noisy (as for SNMU), and the edges of materials
are well defined (as for LNMU). Hence, PNMU combines the
advantages of all methods on this data set. In fact, it is able to
identify many endmembers (see [19,1] where these materials
are identified) among which, from left to right, top to bottom
(Fig. 11c): (2) Desert Varnish, (3) Alunite 1, (5) Chalcedony and
Hematite, (6) Alunite 2, (7) Kaolinite 1 and Goethite, (9) Amor-
phous iron oxydes and Goethite, (10) Chalcedony, (12) Mon-
tmorillonite, (13) Muscovite, (14) Kaolinite 1, (15) K-Alunite, (18)
Kaolonite 2, and (20) Buddingtonite.

3.2.2. MIT-CBCL face database
The previous experiments show the effectiveness of the pro-

posed method in identifying materials that compose a hyper-
spectral image. We now apply PNMU on MIT-CBCL Face database2

with 2429 faces, 19�19 pixels each. This is one of the most widely
used data set in the NMF literature and was used in the original
paper of Lee and Seung [18]. This is a database of faces and non-
faces images, used at the Center for Biological and Computational
Learning at MIT and we use the faces subset of the training set.

We use this data set to show that PNMU can also be used for
other types of images, and provides meaningful and useful results
compared to NMF and NMU variants. As for the Cuprite data set,
we will use μ′ = 0.1 and φ′ = 0.2.

Fig. 12 displays the abundance images obtained with the dif-
ferent algorithms, while Table 2 reports the numerical results. As
for hyperspectral images, PNMU provides a good trade-off be-
tween reconstruction error, sparsity and spatial coherence.

NMF, NMU and LNMU generate mixed abundances where dif-
ferent parts of the faces are represented (for example in Fig. 12c,
the third abundance image in the fourth row, includes the nose,
the mouth, the eyes and the eyebrows all together). The sparse
2 http://cbcl.mit.edu/software-datasets/FaceData2.html
methods (SNMU, PNMU, and SNMF) are able to detect unmixed
parts of the faces, but among these, the parts returned by PNMU
are more localized. In fact, PNMU has a sparsity level comparable
with the other methods enhancing sparsity, but has a better spa-
tial coherence.
4. Conclusions

In this paper a variant of NMU was proposed, namely PNMU,
taking into account both sparsity and spatial coherence of the
abundance elements. Numerical experiments have shown the ef-
fectiveness of PNMU in correctly generating sparse and localized
features in images (in particular, synthetic, hyperspectral and fa-
cial images), with a better trade-off between sparsity, spatial co-
herence and reconstruction error.
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